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nels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of pro
Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are
instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and
construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of
transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic
analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for
the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input,
while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the
outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of
the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of
all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly
demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and
glucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemi
ggena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software g
multiplatform command-line application at http://www.caver.cz.
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Introduction

Proteins are highly complex systems containing a variety of
clefts, grooves, protrusions and empty space in the proteins
interior. Besides many tiny cavitics, this empty internal spa‘ce may
form cavities of specific functions, as well as tunnels and channels
(or pores), representing potential transport pathways for small
molecules, ions and water molecules [1]. Transport pathways play
an essential role in the functioning of a large number of proteins.
The best known examples include: (i) channels mediating the
transport of ions or molecules across biological membranes [2-10];
(ii) tunnels facilitating the exchange of ligands between the active
site and bulk solvent in enzymes with buried active site cavities
[10-17]; and (iii) intramolecular tunnels facilitating the transport
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Detween two distinct active sites in
bifunctional enzymes [10 18-22]. The terms tunnel and channel
are often used interchangeably in the scientific literature,
therefore, we establish following unifying terminology. By channel
we mean a pathway leading throughout the protein structure,
without any interruption by an internal cavity, with both sides
open to the surrounding solvent. By tunnel we mean a pathway
connecting a protein surface with an internal cavity or a pathway

connecting more than onc internal cavity. Accessibility of

individual pathways for different substances is largely governed
by their size, shape and amino acid composition and can be
efficienty modified by protein engincering [4,15,23-30]. Due to
the internal protein dynamics, individual transport pathways and
their characteristics may change significandy over time
[14,17,31,32). Therefore, an ensemble of protein conformations,
rather than a single static structure, have to be analyzed to get
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ut the characteristics of individual
transport pathways in a given protein [14,15,17,32-34].

Recently, several geometry-based tools for rapid identification
and analysis of pathways in protein structures have been
developed [3544] ‘The main hmnauon of these tools is lhAl lhey

very hmned HOLE 1.0 was the first tool
identification of pathways running through macg
Its latest version (HOLE 2.2) supports a
ensembles. However, HOLE 2.2 cannot be

of tunnels or multiple pathways, which restri

1o the analysis of a single channel penetrz

on a grid approximation causing calculation
demands on processor time and memory [37].

have to assign correspondence between tunnels from different
snapshots manually, making CAVER 1.0 unsuitable for the
analysis of more than tens or hundreds of snapshots.

Some of the limitations of CAVER 1.0 were overcome by
MOLE 12 [37] and CAVER 20 [38]. Instead of grid
approximation, these tools employ a Voronoi diagram to describe
the skeleton of tunnels within the structure. The remaining
shortcoming of both MOLE 1.2 and CAVER 2.0 calculation
algorithms is that they construct Voronoi diagram without
considering variability in radii of individual protein atoms, thus
introducing calculation errors which can be as high as 2 A for the
structures containing hydrogen atoms [39). For the analysis of MD
simulations, MOLE 1.2 employs automatic clustering of tunnels
identified throughout the MD simulation based on the sets of
tunnel-lining atoms. The introduction of clustering provided
significant advance in the analysis of tunnels in the structures

.2 clusters each tunnel immediately alter its identlication,
making the results dependent on the order i which individh
tunnels are identificd. Morcover, the results of MOLE 1.2 are
provided separately for cach snapshot. MolAxis 1.4 is another
Voronoi-diagram based tool for identification of tunnels and
channcls [39,40]. Prior (o the construction of the Voronoi

smallest atom mn a

error observed in the carly Vorono: .

MolAxis 1.4 provides the opportunity to compu

‘multiple structures, it cannot be used for automatic analysis of MD)
simulations due to the lack of clustering.

Here, we present a new version of CAVER suitable for the
effective analysis of tunnels and channels in large ensembles of
protein structures. For this purpose, CAVER 3.0 implements new
algorithms for both the calculation and clustering of pathways. For
the construction of the Voronoi diagram, individual atoms of the
analyzed structure are approximated by balls of a fixed size, thus
minimizing calculation errors. Similarities between pathways are
evaluated based on their geometrical distance. The implemented
hierarchical average-link clustering algorithm ensures robust
clustering results and enables an casy adjustment of the clustering
parameters. We demonstrate that CAVER 3.0 outperforms
existing software for geometry-based analysis of pathways in MD
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simulations. It provides detailed characteristics of individual
transport pathways and their time evolution, enables to identify
pathways invisible in a szauc structure and to mvcsugalc the
B , CAVER

1mpor|am

BT of the transport pathways.

Design and Implementation

CAVER 3.0 is written in the Java programming language and

runs on all opcrating sy ith installed Java Runtime
ironment 6

of three scparable steps:
provided structure, wapshot of a MD simulation; (i)
clustering of pathways identified in all snapshots; and (
calculation and generation of output data. Due to the separation
of the identification and clustering steps, it is possible to run the
calculation of pathways in different snapshots in parallel
Morcover, the results of each step can be saved and pro

AMELETS 10T e SUaAled sysic;

1. Identification of pathways

1.1. Voronoi diagram construction. Representation and
processing of Voronoi diagram of balls of equal radii, i.c., ordinary
Voronoi diagram of points, is more effective than working with
Voronoi diagram of balls with variable radii, ie., weighted
Voronoi diagram, and algorithms for its construction are also
better studied [45,46]. MOLE 1.2 and CAVER 2.0 constructs
ordinary Voronoi diagram without considering the differences in
radii of individual atoms, i.c., they represent the structure by a set
of balls of equal radii, where each ball represents one atom. This
can result in the error in the pathway radius estimation as large as
r1—ra, where 7 is the radius of the largest atom in the syste:
r, radius of the smallest one. To take differences in atom radii i
account and still have molecule represented by balls of equal radii,

t alles|
sptnﬁtd nnmbcr of balls wth the van der Waals (VDV\ radius
equal to the VDW radius of the smallest atom, analogously to the
solution used in MolAxis 1.4 [39). By this way, the input structure
is represented by a set of balls of equal radii. The representation
determines a surface which is never above the VDW surface of the
input structure and thercfore the pathway radius may be
overestimated up to a certain limit, but not underestimated. The
upper limits of the overestimation are provided in the output data.
If more than four ball centers are co-spherical, more than four

/aronoi edges may join in a Voronoi vertex [45]. Handling such

the data strus

the center of each ball are cha

lower than 0.001 A. In the following text, w

will be referred to as a representation of input structure
Furthermore, the distance between a point and a ball will always
denote the distance of the point and the closest point on the
surface of the ball. Finally, Delaunay triangulation [47] of the RIS
centers is used to construct the vertices and edges of the Voronoi
diagram [45).

1.2. Cost function. The axes of the pathways are identified
as simple paths in a graph composed of Voronoi vertices and
edges, i.c., the axis of a pathway is a sequence of Voronoi edges,
where each of the two consecutive edges share a vertex. The
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Tool for Analysis of Tunnel and Channel Dynamics

Figure 5. Bottleneck dynamics and structural basis of gating in the p1 tunnel of DhaA. (A) The bottleneck 1 represents the most frequent
bottleneck of the p1 tunnel and is mostly formed by Ala145, Phe149, Ala172 and Cys176. Comparison of snapshots with an open (red) and closed
(blue) p1 tunnels suggested that the gating is mediated by: () movement of the N-terminal part of the cap domain carrying Ala145 and Phe149; (i
movement of the a5-helix with Cys176 and Ala172; and (il conformational change of the bottleneck residues Phe149 and Cys176. The bottleneck
radius in the selected snapshots with an open and closed tunnel was 2.3 A and 0.9 A, respectively. (8) The bottleneck 2 of the p1 tunnel is mostly
formed by Thr148, Ala172 and Lys175. Comparison of snapshots with an open (red) and closed (green) p1 tunnel suggested that gating is mediated

by: () movement of the N-terminal part of the cap domain carrying Thr1

movement of the u5-helix carrying Ala172; and (ii) the conformational

change of the bottleneck residues Thr148 and Lys175. The bottleneck radius in the selected snapshot with an open and closed tunnel was 2.3 A and

0.9 A, respectively.
doi:10.1371/journal.pcbi.1002708.9005

‘maximum radius of the p1 tunnel bottleneck in the MD simulation
was 2.3 A (Figure 4 and Table $4).

Analysis of bottleneck dynamics. The residues forming the
tunnel bottleneck represent promising hotspots for the modifica-
tion of tunnel properties, since their substitutions have potentially
the most pronounced impact on the tunnel geometry. Similarly to
other tunnel characteristics, the analysis of the bottlenecks is more
informative when the dynamics of the protein is considered. The
list of the bottleneck residues obtained by the analysis of the MD
trajectory using CAVER 3.0 suggested the existence of two distinct
bottlenecks along the DhaA p1 tunnel, while only one of them can
be identified in the crystal structures (Table S4). The analysis of
the bottlenecks in the MD trajectory also revealed the structural
details of the tunnel gating.

‘The most frequent botteneck in the DhaA pl tunnel is formed
mainly by Pheld9 (71% of pl wnnels), Cys176 (39%), Alal72
(50%) and Alal45 (38%) residucs, mostly in combinations Alal45-
Phel49-Cys176 and Phel149-Alal72-Cys176 (26% and 24% of all
pl pathways, respectively). Comparison of structures with an open
and closed p1 tunnels suggested that the gating in this bottlencck is
mediated by the movement of the N-terminal part of the cap

domain (Glu139-Phe149) carrying the bottlencck residucs Alal45
and Phel49, movement of the C-terminal part of the o5-helix with
the bottleneck residue Cys176, and by the conformational change
of the bottleneck residucs Phel49 and Cys176 (Figure 5A). The
proposed structural basis of gating in the botdeneck is in
agreement with the results from RAMD analysis [15].

The sccond botdencck is positioned at the tunnel entrance from
the bulk solvent and is formed predominandy by Lys175 (26% of
all pl pathways), Thr148 (23%) and Ala172 (50%; also included in
the first bottleneck), most ofien in the comb rl48-
Alal72-Lys175 (16% of all p1 pathways). The gating in the sccond
botdeneck scems to be mediated mainly by the conformational
change of Lys175 (Figure 5B). This residuc has previously been
observed to participate in the chloride ion release during MD
simulations [15]. The gating is also facilitated by the movement of
the N-terminal part of the cap domain (Glul39-Phe149) with the
botdencck residue Thrl48, by the conformational change of
Thr148 and by the movement of the a5-helix with the bottleneck
residue Ala172. Unlike the first bottlencck, the second one cannot
be observed in the crystal structures, and can only be identifid by
the analysis of MD trajectories.

Table 2. DhaA variants with modified catalytic properties, carrying substitutions in the bottleneck residues (in bold) identified by

Effect

3.5-times higher activity with TCP.
C176F+G3D 4.0-times higher activity with TCP
1135F4C176Y+V245F+L2461Y273F 32-times higher activity with TCP.

K175M+C176G+Y273L 10,000-times higher

doi:10.1371/journal.pcbi.1002708.t002
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ing rate of fluorescent probe
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The importance of the bottlencck residucs identified by
CAVER 3.0 for the catalytic properties of DhaA had alrcady
been demonstrated experimentally (Table S5, Table 2). Two
independent  directed evolution experiments  provided  DhaA
variants C176Y+Y273F and C176F+G3D with 3.5-times [61]

ants. camed mumuon in the position Cys176, which forms the
bottleneck of the pl tunnel. In another study [28], the DhaA
variant C176Y+Y273F was used as a template for focused directed
evolution, subjecting Ile135 (bottleneck of p2a, p2c and p3
tunnels), Val245 (bottlencck of p2b and plb tunnels) and Leu246
(bottleneck of p2a and p2b tunnels) to simultaneous saturation
mutagenesis. The best variant 1135F+C176Y+V245F+L2461-
+Y273F showed 32-times higher activity towards TCP than the
wild type enzyme, which is duc to decreased accessibility of buried
active site for water molecules [28]. A focused directed evolution of
the DhaA variant H272F was conducted to improve the binding of
a fluorescent probe into the enzyme active site [63]. The best
variant K175M+C176G+Y273L, with four orders of magnitude
improved binding rate, carried two substitutions in the pl tunnel
bottenecks (K175M and C176G) and one in the active site cavity
(Y273L). Aliogether, these four examples demonstrate that
analysis of access tunnels using CAVER 3.0 can be useful for
the selection of suitable hot-spots for engincering of enzyme
catalytic properties. The study of dynamical systems enables the
identification of pecks and provides invaluable

T (e
analysis of dynamical systems, the software implements sevel
new algorithms for accurate calculation and clustering ol
pathways. CAVER 3.0 requi

microbial enzyme haloal
to identify and reliably estimate the importandllof all previously
published DhaA tunnels, including tunnels closqll in DhaA crystal
structures as well as to correctly predict the k cck residucs
important for the catalytc function of this .. Detailed

relevant auxliary tunnels or prediction of tunnels wh
is disputable.

plication.
e e o R (O e
V30 and is frecly available at hup://www.caver.cz or as
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Supporting Information

Figure S1 Clusters of pathways calculated in the molecular
dynamics simulation of haloalkanc dehalogenase DhaA by
CAVER 3.0 (A-C) and MOLE 1.2 (D-F). Pathways identificd

to the same cluster, only the pathway with the lowest cost is shown.
‘The variants of the pl (main) tunnel are in different shades of blue,
variants of the p2 tunnel in yellow, green and magenta and the p3
tunnel is in red. (A-C) CAVER 3.0 results for different settings of
the clustering threshold. (A) Clustering was performed with
constant weights along the entire pathway and low clustering
threshold of 3.5. The pl pathways with dispersed openings as well
as the p2a and p2b pathways which have a common opening are
separated into different clusters. (B) Increasing the clustering
threshold led to the joining of the p2a and p2b pathway clusters.
(C) Further increase of the clustering threshold led to the grouping
of all the pl pathways into a single cluster. Note that some of the
previously visible pl pathways are not visible afier the change of
threshold since in individual snapshots, only the pathway with the
lowest cost is shown for each cluster. (D-F) MOLE 1.2 results for
different settings of the clustering parameters. (D) The parameters
were set to distinguish the known variants of the p2 tunnel; the p2a
and p2b pathway clusters are not well defined as they largely
overlap along the entire tunnel length. The pl tunnel was divided
into multiple clusters. (E) Recalculation with a lower value of the
bound parameter led to the grouping of a portion of the pl
pathways into one cluster, while other pl pathways remained
separated. The p2a and p2b clusters are not well defined—part of
the p2b cluster overlaps with the p2a cluster and part with the plb
cluster. (F) The bound g (0 join all the pl

c p2ab
Note that many ui the pr

[ haloalkane

Protocol $4 Analysis of crystal structures of DhaA.

(PDF)

Software S1 CAVER 3.0 p: ge containing CAVER 3.0
executable, source code, license, documentation and examples.
‘The latest release of CAVER 3.0 can be downloaded from hup://
www L

(z1p)
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Table 83 Characteristics of the pathways identified in DhaA
erystal structures using the probe radius of 0.8 A.

(PDE)

Table 84 Comparison of characteristics of the DhaA pl tunnel
obtained by the analysis of the molecular dynamics trajectory and
crystal structures.

(PDF)

Table §5 Bouleneck residues of the top ranked tunnels gf
identified by CAVER 3.0 in molecular dynamics trajeg

the probe radius of 0.9 A and the clustering threshol

PDR

Text 81 Evaluation of potential false positive results§

(PDF)

Text 82 Comparison of tunnels identified by CAVER 3.0 wit
known DhaA tunnels.

(PDF)
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